
JPL Publication 94-16

System Considerations for
Efficient Communication and

Storage of MSTI Image Data

Robert F. Rice

October 1994

Prepared for

Ballistic Missile

Defense Organization

Through an agreement with

National Aeronautics and

Space Administration

by

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, Calilornia

The research described in this publication was carried out by the Jet Propulsion

Laboratory, California Institute of Technology, and was sponsored by the Ballistic

Missile Defense Organization (BMDO) through an agreement with the National

Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise, does not constitute or imply its

endorsement by the United States Government, or the Jet Propulsion Laboratory,

California Institute of Technology.

Recipients of this document must obtain JPL authorization prior to forwarding

this document to any institution, foreign country, or individual.

This document is subject to U.S. export regulations and is intended for use

strictly for the requester. You may not transfer, rent, lease, lend, copy, modify,

translate, time-share, or electronically transmit or receive the document via any media

without prior approvals from JPL.

ABSTRACT

The Ballistic Missile Defense Organization has been developing the capability

to evaluate one or more high-rate sensor/hardware combinations by incorporating

them as payloads on a series of Miniature Seeker Technology Insertion (MSTI) flights.

This publication represents the final report of a 1993 study to analyze the potential

impact of data compression and of related communication system technologies on

post-MSTI 3 flights.

Lossless compression is considered alone and in conjunction with various

spatial editing modes. Additionally, JPEG and Fractal algorithms are examined in

order to bound the potential gains from the use of Iossy compression. But Iossless

compression is clearly shown to better fit the goals of the MSTI investigations.

Lossless compression factors of between 2:1 and 6:1 would provide significant

benefits to both on-board mass memory and the downlink. For on-board mass

memory, the savings could range from $5 million to $9 million. Such benefits should

be possible by direct application of recently developed NASA VLSI microcircuits.

It is shown that further downlink enhancements of 2:1 to 3:1 should be feasible

through practical modifications to the existing modulation system and incorporation of

Reed-Solomon channel coding. The latter enhancement could also be achieved by

applying recently developed VLSI microcircuits.

III

ACKNOWLEDGMENTS

The system considerations provided here are based on assumptions for data/

sensor and communication system parameters obtained from Robert Denard and Marc

Coleman of Phillips Laboratory and Ray Rew of Spectrum Astro.

iv

TABLE OF CONTENTS

I. BACKGROUND/PROBLEM DEFINITION ... 1

BASIC PROBLEM .. 1

DATA SYSTEM ELEMENTS AND TERMS ... 5

END-TO-END BLOCK DIAGRAM .. 7

II. ON-BOARD MASS MEMORY IMPACT ... 11

II1. DOWNLINK CONSIDERATIONS .. 16

ASSUMPTIONS ... 16

LOSSLESS TRANSMISSION TIMES ... 17

BACKGROUND/FOREGROUND MODES ... 22

INDEXING THE DATA ... 35

IV. SUMMARY .. 37

APPENDIX A Algorithms for High-Speed Universal

Noiseless Coding ... A-1

APPENDIX B A Practical Concept for Improving the MSTI

Downlink Data Rate by 2:1 to 3:1 ... B-1

V

Figures

1. Key On-board Data System Elements ... 3

2. The Content of Frames .. 3

3. Rate/Quality Relationships ... 6

4. End-to-End Data System Elements .. 7

5. Mass Memory Compression Value ... 13

6. Mass Memory Impact on Collection Interval, 4 1024 x 1024 x 12 Sensors 14

7. Mass Memory Impact on Collection Interval, 4 256 x 256 x 8 Sensors 15

° Transmission Time (active link time) required for transmission of

full 10-minute Sensor Events using 4 sensors and 1024 x 1024 x 12

images or central, 2 n x 2 n sub-images .. 18

go Total Downlink Time (including 1/9th duty factor) required for transmission

of full 10-minute Sensor Events using 4 sensors and 1024 x 1024 x 12

images or central, 2 n x 2 n sub-images .. 21

10. BGFG Mode Concept .. 23

11. BGFG Block Diagram .. 23

12. Overhead Penalty .. 28

13. BGFG System Compression Factors using Table 3 Image Sizes 31

vi

Tables

1. Mass Memory Data Accumulation .. 12

2. Collection Rate vs. Effective Downlink Rate .. 17

3. BGFG Image Sizes Studied ... 30

4. Important BGFG Mode Observations, I ... 33

5. Important BGFG Mode Observations, II.. 33

6. BGFG Actual Downlink Times, Default o_= 1 (all data Iossless) 34

7. Selected BGFGs, Actual Downlink Times, oc= 8 .. 34

vii

I. BACKGROUND/PROBLEM DEFINITION

The Ballistic Missile Defense Organization (BMDO) has been developing the

capability to evaluate one or more high-rate sensor/hardware combinations by

incorporating them as payloads on a series of Miniature Seeker Technology Insertion

(MSTI) flights. This publication represents the final report of a 1993 study to analyze

the potential impact of data compression and of related communication system

technologies on post-MSTI 3 flights.

For the purposes of discussion here, it is assumed that the principal purpose of

a MSTI flight is to provide the capability to thoroughly evaluate the characteristics of

one or more image sensor/hardware combinations. This includes the ability to

determine not only that a system worked, but if it didn't, why? The following

discussions will make certain system baseline parameter assumptions and then

identify how data compression can improve MSTI capability to achieve these

evaluation goals and others as well.

BASIC PROBLEM

During the lifetime of a flight there can be expected to be several Sensor

Events which will nominally last only 10 minutes each. But the data generated during

a Sensor Event is at a much higher data rate than can be communicated in real-time.

This is the fundamental problem! The data system must be such that for each Sensor

Event:

la) Sensor/hardware operation can be verified.

1b) If operation is flawed, one can determine why.

lc) A full visual demonstration of targeting is possible.

ld) Sample real data from distinct scenarios is provided for

• Future analysis.

Verification/upgrade of "Kinetic Energy Weapons Hardware In the

Loop Simulator" (KHILS) simulation capability; KHILS is located

at Eglin Air Force Base.

1e) Ecological monitoring.

Baseline Parameters

Figure 1 illustrates the key elements of the on-board data acquisition system

and uses parameters obtained from meetings with Phillips Laboratory and Spectrum

Astro in early 1993.

Multiple sensors generate image data at 30 frames/second (f/s) for a Sensor

Event's time period which we will henceforth assume to be 10 minutes. Nominal

frame sizes are a baseline 256 picture elements x 256 lines at 8 bits/pixel (b/p), but

frame sizes may be as high as 1024 x 1024 x 12. Use of the latter specification will

correspond to worst case (maximum) conditions in future discussions.

Each "event" is stored in mass memory for later transmission. A baseline sensor

generates approximately 15 Mbits/s, which for a full Sensor Event interval (10 minutes)

results in an accumulation of about 1 Gbyte of data or 18,000 frames. However, a

single 1024 x 1024 x 12 sensor could generate 28 Gbytes of data for a Sensor Event,

and do so at 377 Mbits/s.

What Data is Needed?

Figure 2 focuses on individual frames of image data. On-board tracking can be

expected to maintain lock on "something." If this something is the desired "target," the

sensor/hardware combination is working. If the tracker veers off from the real target, it

is important to be able to discover why by analyzing the data in the many frames

generated during the same time period (i.e., those the tracking system would have

used when the system failed).

The target itself might typically lie within a 16 x 16 area during proper operation

(assuming the baseline 256 x 256 size image).

2

o

,?

BASELINE MAX (1024 X 1024 X 12,
I / 377 Mb/s)

_ _" MASS (MAX = 28 GBYTES)
oJ _ MEMORY ,//

30 fls u. I

I_.

10 MIN.
"SENSOR

EVENT"

=15 Mb/s

ol
I,LI
i i

LLI

EVENT
1.17 GBYTES OF

FRAMES (18,000)

,,'___,.- TRANSMIT
/

Fig. 1. Key On-board Data System Elements.

A

/ CENTRAL REGION
• ON-BOARD TRACKING

MAINTAINS LOCK
ON "SOMETHING"

. "USUALLY" CORRECT

TARGET

- < 16 X 16 (FOR
J 256 X 256 IMAGE)

PERIPHERAL REGIONS

• "USUALLY" JUST
BACKGROUND

MIGHT CONTAIN
CORRECT TARGET
WHEN TRACKER IS
WRONG!

Fig. 2. The Content of Frames

3

Meeting the Goals in Paragraphs (l a) through (le)

2a) If we are seeking full verification that some sensor/hardware combination

works, only the central area (containing the target) is needed. Probably

close to full frame rate is desired for this central area.

2b) If the system fails, then all the data in all the frames in the time period

around the failure are needed (at full fidelity).

Since when and if such an event might occur is unknown, this implies

that no data should be discarded or degraded on its way into

mass memory.

2c) To visually demonstrate what a sensor "saw" (e.g., make a movie), a

significantly lower frame rate at some possibly lower quality is probably

acceptable.

2d) To provide complete data sets, clearly all the data must be recovered

without degradation.

2e) To demonstrate sensor capability to support "ecological monitoring"

suggests a requirement for gathering sets of full quality images for

ground processing and study. No data in these sets would be discarded

or degraded on their way into mass memory. However, these sets of

images should be far smaller than those gathered for the primary MSTI

mission. (This is because such images can be acquired at a relatively

very low frame rate.) This requirement should thus have

negligible impact on data storage and downlink requirements.

These are all important observations and will directly impact the approaches to

data compression which are treated later.

4

DATA SYSTEM ELEMENTS AND TERMS

For our purposes at this point, Data Compression can be looked at as any

mechanism for representing a set of data. (The sets of data we'll be interested in

are various sub-sets of image data generated by a MSTI Sensor Event.) Of course, the

goal is to reduce the number of bits required, compared to a Standard Representation

(i.e., uncompressed). The factor by which the number of bits is reduced is usually

called the Compression Factor (CF). If a Standard Representation is used, CF=I.

When dealing with images, a normalized image rate in bits/pixel (b/p) is often

given. This typically reflects the number of bits originally used to quantize each

individual pixel (e.g., the 8 b/p assumed for a baseline sensor). A compression rate is

then the average b/p required by a particular compression scheme.

Rate/Quality. Generally, a compressed data set must be "decompressed" or

reconstructed back into an approximation of the Standard Representation before

it can be used. When the reconstruction produces an exact reproduction of the original

Standard Representation, the method of compression is said to be "lossless" or

"noiseless". Otherwise, when the reconstruction produces an imperfect reproduction of

the original Standard Representation, the method of compression is called "lossy".

Figure 3 illustrates the relationship between rate and quality (of reconstruction)

relative to the uncompressed image data, when data compression is applied to

individual image frames (intraframe compression).

Lossless compression of 2:1 is typically achievable with intraframe

compression. But the precise CF is data dependent and could be slightly less than 2:1

or as much as 3:1 for MSTl-like data. Of course, the algorithms used can make a

difference, too. In particular, using information from adjacent frames (interframe) could

substantially increase the possible compression factor for Iossless compression of

some forms of MSTI data. We will call this kind of compression "Frame-to-Frame

Lossless" or "F-to-F" Iossless for short. In providing estimates of system impact, later

discussions will assume an estimated average CF = 6:1 for F-to-F Iossless

compression.

<

O

PERFECT

TH_O D / F-TO-F ?
I LOSSLESS

ME 1 _/"_

I /

I METHOD 2

I
I
I

10:1 2:1 1:1

COMPRESSION FACTOR

NO

COMPRESSION

/

Fig. 3. Rate/Quality Relationships.

If errors are allowed in the reconstruction of some data set, the general rule is

that higher compression factors are achievable (as compared to Iossless). Again, the

methods used can substantially impact the achievable CF (for a specified level of

quality). These points are illustrated in Fig. 3.

Rice Algorithms. This report will ultimately demonstrate major advantages of

using JPL-developed adaptive Iossless compression algorithms for MSTI needs.

These have been demonstrated to be superior to any other Iossless techniques for

imaging and have recently been implemented as high-speed custom micro-circuits.

Discussions of Baseline Intraframe Iossless compression will assume the application

of these chips. Where applicable, F-to-F variations in Iossless coding can probably

make use of the same chips, with some external hardware. Appendix A provides a

discussion of the primary Rice Algorithms, current VLSI implementations and a list of

references. Appendix A mentions a JPL chip being developed for the deep-space

Cassini Project. This same chip was tested at KHILS for an application to the MSTI 3

downlink.

6

Lossy Compression. For those situations where imperfect reproduction is

acceptable for at least some of the data generated by a Sensor Event, we will

investigate the consequences of several approaches. These will include simple

spatial/temporal editing modes (which can also make use of Iossless coding) as well

as the commercial JPEG algorithms and powerful systems under development which

use FRACTALS.

END-TO-END BLOCK DIAGRAM

Figure 4 shows how the major end-to-end data system elements and data

compression fit together.

As shown, one or more sensors generate high rate image data (see Fig. 2) of

which a small subset can be transmitted to the ground in real-time. This small subset

cannot satisfy all the goals in paragraphs (la)-(le), so further discussion will focus on

the non-real-time acquisition and return of "required" data. See paragraphs (2a)-(2e).

m

I- -!mmmmmmmmmm m

A,,, i m

co...E S.H .ASSHCOO...SS. z " MEMORY "
"' I i I

T
i

COM_..MANDS J _-'J_'?'_'_r-

i I I

l VIEW, H MASS HDECOMPRESS il_I ANALYZE MEMORY
I

L................._J____"
?

Fig. 4. End-to-End Data System Elements

Zl
m !

.-I I
Zl

OI

The high rate image data is placed in a mass storage device and then later

downlinked to the ground for processing, display, and analysis. As we'll see, it may be

desirable to make this downlink process "interactive" because of the length of time

needed to transfer all "desired" data from a Sensor Event. In this case, received data is

immediately viewed to determine the content of subsequent transmissions (see the

line designated "Commands" in Fig. 4).

Compressor Location On-Board

The on-board data system in Fig. 4 shows two boxes labeled "compress". This

is because data compression applies to both locations. For several reasons, not all of

them technical, a MSTI 3 demonstration of Iossless compression will place the

compressor after mass memory. However, for post MSTI 3 missions it is not yet clear

where it will be possible to locate it.

As noted in paragraphs (2a), (2d) and (2e), goals (la), (ld) and (le) cannot be

achieved unless all the data is placed into mass memory in a form which can

ultimately be reconstructed on the ground without error. That is, if compression is

used before storage in mass memory, it should be Iossless compression.

Ultimately, the advantage in applying compression before storage in mass

memory is:

a)

b)

A reduction in memory requirements, or

An increase in memory capability for a given memory capacity.

Both of these can translate into significant dollar savings. This potential is quantified in

a later section.

Note that the placement of the compressor after mass memory on the MSTI 3

demonstration precludes achieving either of these advantages before MSTI 4.

There are some subtle implementation consequences to compressing

before storage in mass memory. Later, we will identify Iossy compression modes for

data received from mass memory. These include spatial/temporal formatting

techniques (later identified as BGFGs), which make use of Iossless coding, JPEG

algorithms and FRACTALS. The JPEG and FRACTAL techniques can only be

applied to uncompressed data. This would imply that data which had

8

been placed into mass memory compressed (Lossless), would need to be

"decompressed" before these other techniques could be used.

Implementing these spatial/temporal formatting techniques using only Iossless

coding would not necessarily require an on-board Iossless decompressor, but

could require careful attention to the manner in which compressed data was "data

based" into memory. This in turn could influence the choice of "compression chip"

used (i.e., it could be different than the schedule-mandated choice for MSTI 3).

The Downlink

The advantages of data compression to the downlink process are much like

those in the situation for on-board mass memory. The link rate is inadequate, under

almost any realistic assumptions. Data compression decreases the time needed to

communicate through a data link of a specific capacity. But the potential CF for

downlinking is higher than for on-board mass memory because some situations

may not require Iossless reconstruction of all the data. This subject is treated later.

Information provided by Ray Row of Spectrum Astro in March 1993 led to a

proposal for a future practical upgrade of the uncoded 1 Mbit/s MSTI 3 downlink, at a

bit error probability of 10 -6, to from 2 to 3 Mbits/s with far superior error characteristics.

This proposal is repeated as Appendix B and includes discussion on the interaction of

compressed data and channel errors.

The Ground Data System

The position of a decompressor relative to mass memory on the ground cannot

yet be determined, as illustrated in Fig. 4.

Thus far there has been virtually no discussion of ground concerns. Our

assumption has been that decompression could always be done in non-real-time,

using software methods. This will certainly be the case for initial compression

experiments. Thus decompression would initially follow extraction from mass

memory (although the decompressed data would probably still reside in some other

9

mass memory form, not shown in Fig. 4). But in the longer run, this area needs greater
consideration.

For example, to interactively respond to transmitted data, perhaps altering what
is sent next, a decompressor would need to operate as fast as the downlink produces

the data. Assuming a 1 Mbit/s downlink, data compressed 2:1 (Iossless, intraframe -

the baseline) would need to be decompressed into display data at a 2 Mbit/s rate. A
software approach might be feasible. But if the compression factor were 50:1,

decompressed data would generate 50 Mbits/s of display data. A purely software
solution is unlikely.

This is simply one of numerous ground considerations that ultimately influence
the viability of various compression approaches discussed in later sections. Ground

processing is part of the overall data system and needs to be considered in concert

with on-board data system developments.

10

II. ON-BOARD MASS MEMORY IMPACT

Table 1 illustrates the potential advantages to on-board mass memory capacity

requirements based on a number of assumptions, specified below:

1) Sensor Event Parameters:

Frame Rate = 30 f/s

Collection Interval = 10 minutes

2) Baseline intraframe Iossless compression achieves an average CF of

2:1.

3) Frame-to-Frame (F-to-F) Iossless compression achieves an average CF

of 6:1.

4) A baseline Sensor Event for one sensor (256 x 256 x 8) requires 1.17

Gbytes of memory.

5) Worst Case (maximum) assumption of an uncompressed Sensor Event

for a single sensor (1024 x 1024 x 12) is 28 Gbytes of data.

Then Table 1 shows, for 1 and 4 sensors, the total accumulation for a single

Sensor Event, with and without Iossless compression.

Compression Value

Consider assigning a value to the application of Iossless compression by the

following:

Let

e = Total Cost of Memory if compression is not applied. (1)

11

Table 1. Mass Memory Data Accumulation

"10

ACCUMULATION TOTAL, GBYTES

CF 1 SENSOR 4 SENSORS

1:1 1.17 4.68

2:1 0.58 2.34

6:1 0.19 0.78

== 1:1 28 112
,9°

z 2:1 14 56

6:1 4.7 18.7

The Compression Value (CV) is then defined as the difference in the cost of

memory, with and without compression:

e
CV = e - CF (2)

where O/CF is the cost of memory needed when compression is used.

Various estimates for the true cost of "flight" mass memory have been put forth.

These have ranged between

$100 K/Gbyte (3)

up to

$1 million/Gbyte (4)

Figure 5 illustrates the cost/value (0 and CV) of Eq. (2) for both of these assumptions.

Simply interpret the ordinate as either in $100K units or in $1 million units.

12

MEMORY REQUIRED WITHOUT COMPRESSION, GBYTES

Fig. 5. Mass Memory Compression Value

If we consider the baseline as four sensors with the minimum (256 x 256 x 8)

format, 4.68 Gbytes are needed. Assuming a cost of $100K/Gbyte, the uncompressed

memory requirement is $468K and the compression value is 468 - 468/2 = $234K

assuming a 2:1 compression. But this is $2.34 million at the other end of the scale.

Assuming large format sensors, requiring a worst case 112 Gbytes (for four 1024 x

1024 x 12 sensors), the value of compression is a minimum of $5.6 million for 2:1 and

$9.3 million for 6:1 (F-to-F), assuming the lowest cost of $100K/Gbyte.

If the cost of memory were only double the minimum assumption of

$100K/Gbyte, the potential value of compression would go to $11.2 million and $18.6

million respectively for 2:1 and 6:1. This would suggest that performing even the 2:1

13

compression before loading in mass memory should have value far exceeding

compression cost,

Collection Interval

Another way to look at the impact of compression and memory is to assess the

limitations imposed on the allowed collection interval. Figure 6 shows the impact when

the worst-case sensor complement of four 1024 x 1024 x 12 sensors is assumed.

Without compression 112 Gbytes of mass memory are required to achieve the

"desired" full 10 minute Sensor Event. Only 56 Gbytes are needed if 2:1 compression

is to be achieved (baseline Iossless compression) and only 18.6 Gbytes if a 6:1 F-to-F

capability were achieved. But without compression, having "only" 19 Gbytes would

limit collection intervals to less than 2 minutes instead of the desired 10.

A similar graph appears in Fig. 7 where four 256 x 256 x 8 sensors are

assumed. With only 1.17 Gbytes of mass memory, a system without compression could

collect only Sensor Events which were 2.5 minutes in length.

Again, the advantages of employing Iossless compression before mass memory

storage are quite obvious, particularly when large format sensors are anticipated.

FULL SENSOR EVENTINTERVAL

o ,o[t / .-'1"F=

I /CF=6 / I -" I
i /' /'OF==' .-" I

_.. Lj i / I .- CF=I I
z 5r- 7-i-1- - _.;i I7> I//.-'" ', I
_, 1.691-#7.;-1"- i i
0 0

0 19 56 112

AVAILABLE MASS MEMORY, GBYTES

Fig. 6. Mass Memory Impact on Collection Interval,

4 1024 x 1024 x 12 Sensors

14

FULL SENSOR EVENTINTERVAL

o,0 / /T= I ,," I

/CF=6 _1 ._" I

=_ /' I /CF=2 I " I

_- CF=I I

:" _rt__ -__ ,_-
l//_-_" ,

=_ Ill.,", ,
V" I , , ,

0 0
0 0.76 1.17 2.34 4.68 5

AVAILABLE MASS MEMORY, GBYTES

Fig. 7. Mass Memory Impact on Collection Interval,

4 256 x 256 x 8 Sensors

15

III. DOWNLINK CONSIDERATIONS

ASSUMPTIONS

Ray Rew of Spectrum Astro has specified the MSTI 3 downlink as an uncoded

link with the following description:

Downlink Rate = 1 Mbit/s

Minimum Error Rate = 10 -6

Based on this description of the downlink, a technique for upgrading this

capability to up to 3 Mbits/s with virtually error-free communication has been proposed.

Implementation should be straightforward and could provide another important

technology demonstration for BMDO. This approach for incorporating Reed-Solomon

encoding is described in Appendix B.

Assuming there is still a possibility for these improvements to be implemented,

we will assume

1 < RD < 3 Mbit/s (5)

where RD is the downlink data rate, and RD = 1 Mbit/s is the baseline. Error

considerations are also described in Appendix B.

Duty Factor

The situation is worse than RD in Eq. (5) would imply because the link is only

available for 10 minutes out of a 90 minute orbit. The net result is an "effective"

average downlink rate of only

D IR = RD/9 (111 _<RD < 333 Kbits/s) (6)

Table 2 illustrates the extent of the disparity between the (effective) downlink

rate, R'D, and the collection rate, which lists values for the fraction

16

Collection Rate (7)
I

RD

Table 2. Collection Rate vs.

SENSOR TYPE

256 X 256 X 8

1024 X 1024 X 12

R D, Mbits/s

1

3

3

Effective Downlink Rate

COLLECTION RATE

Ro

1 SENSOR

141

(EFFECTIVE DOWNLINK RATE)

4 SENSORS

566

47

3397

1132

189

13,590

4530

LOSSLESS TRANSMISSION TIMES

Transmission Time

We can begin looking at some of the trade-offs that will need to be considered.

Figure 8 illustrates the "required" transmission times (i.e., using RD in Eq. (5), not R D in

Eq. (6)) to transmit selected subsets of all the frames of a 10 minute Sensor Event,

assuming four 1024 x 1024 x 12 sensors. This corresponds to the, possibly

conservative, worst case situation in Table 1 (112 Gbytes).

The ordinate in Fig. 8 shows the number of hours of link time to return all the

data of a central, square 2 n x 2 n sub-image. The abscissa shows the size of one side

of this central sub-image, 2 n. This axis can also be viewed as the size of a smaller

format image to be sent (not a sub-image).

17

2000

1000

720

¢_ 500

168

= 3 MONTHS
'2489

/

* TRANSMISSION TIME DOES NOT •

INCLUDE THE l/9th DUTY FACTOR I"
(SEE EQUATION 6) ,_

244

F IF .,'Y
_.O.T.1 Vy // 17

/ / I __ o"'/ ..--°'_°/

i ._'_-.__.__8.6 _ 34.5 "o""

64 128 256 512 1024

SQUARE SUB-IMAGE DIMENSION

Fig. 8. Transmission Time (active link time) required for transmission of

full 10-minute Sensor Events using 4 sensors and 1024 x 1024 x 12

images or central, 2 n x 2 n sub-images.

18

Cases Considered

The following six assumptions are made about the data compression/downlink

capabilities:

a) Data is transmitted uncompressed on a downlink with 1 Mbit/s

capability. The graph is indicated as (RD = 1, CF = 1).

(8)

b) The MSTI 3 experimental data compression of 2:1 is assumed

and the downlink remains at 1 Mbit/s (RD = 1, CF = 2).

(9)

c) Data is transmitted uncompressed, but the proposed improved

downlink capability using Reed-Solomon coding achieves a

downlink data rate of 3 Mbits/s (RD = 3, CF = 1).

(10)

d) Assumptions (9) and (10) are combined (RD =3, CF = 2) for a

system gain of 6:1.

(11)

e) A 1 Mbit/s downlink is assumed but a 6:1 F-to-F or Iossless

compression is achieved (RD = 1, CF = 6). This option has

the same system gain as Assumption (11), but is probably more

difficult, and does not apply to all sensors.

(12)

f) Assumptions (10) and (12) are combined for an overall system

gain of 18:1 (RD = 3, CF = 6).

(13)

Worst Case. The worst case situation occurs when 2n = 1024, corresponding

to sending all of the 1024 x 1024 images. With the basic (RD = 1, CF = 1) system, 2489

hours of downlink time are required; that is, around 3 months. For the most do-able

high performance capability in Assumption (11), this is reduced to around 414 hours

(=2 weeks). In the ideal case in Assumption (13), this might be reduced further to about

6 days.

19

Reducing 2 n. Reduction in image size has a dramatic effect since total data

accumulation is proportional to (2n) 2. Reduction down to the current baseline image

size of 256 x 256, reduces the total time to 155 hours. (RD = 1, CF = 1, n = 256.)

But applying the quite feasible improvements in Assumption (11) reduces this

time further to 26 hours, or about 1 day (RD = 3, CF = 2, n = 256).

Using these same improvements and sending only a central 64 x 64 image,

would require only 1.6 hours.

Total Transmission Time (with duty factor)

Unfortunately, link availability is not continuous as indicated in Eqs. (6) and (7).

All the times indicated in Fig. 8 must be multiplied by 9 to get the actual duration

required to get the same data down. A corresponding graph is shown in Fig. 9.

Clearly, the problems are severe and shouldn't be taken lightly, particularly if

large format sensors are really anticipated. With the basic implementation (RD = 1, CF

= 1) and an image size of 1024 x 1024, the total time necessary is over 2.5 years,

making transmission quite impractical. Even assuming 256 x 256 size sensors would

only reduce this down to about 2 months.

The most feasible implementation in a near-term time frame is the (RD = 3, CF =

2) combination. This gets the maximum time down to about 5 months.

If the "average" 2 n x 2 n frame size were 2 n = 512, the (RD = 3, CF = 2) system

could get all the data back in a little over 1 month, perhaps an acceptable situation.

This goes to about 1-1/2 weeks if the frame size is instead, the baseline 256 x 256.

Using only 8 bits/pixel, reduces this further to about 1 week.

20

¢/)
>-
<C
E3

ELI
3!
m

I-

z
m

,J
Z

O
a
.J

I-
0
I-

I I

730 _2 YEARS

1 YEAR
365

1/2 YEAR
182

1 MONTH
36- - -

F,n
A.=.-r .r.

64 128

133

39

256 512

SQUARE SUB-IMAGE DIMENSION

,933

466

155

51

T
1024

Fig. 9. Total Downlink Time (including ll9th duty factor)

required for transmission of full 10-minute Sensor Events using

4 sensors and 1024 x 1024 x 12 images or central, 2 n x 2n sub-images

21

BACKGROUND/FOREGROUND MODES

Thus far, all compression considerations have employed only Iossless coding,

focusing primarily on getting all the data back, unmodified, thus satisfying all the

desired goals noted in Paragraphs (la) through (le) and (2a) through (2e). This

section focuses on situations where either all the data is not required and/or the

reconstructed data is not required to have perfect fidelity. Under the following

conditions, significantly higher compression factors should be possible.

• Verification;

Quick survey (browsing) to discover where a problem developed (for

subsequent transmission of such data with Iossless fidelity);

Verification and full-frame visual playback.

Definitions

The concept of Background/Foreground Modes (BGFGs) is illustrated in Figs.

10 and 11. To parameterize the discussion:

• A full frame size is 2 N x 2 N (baseline N = 8, maximum N = 10). (14)

• The central (foreground) 2 n x 2 n region of every (th frame in a (15)

Sensor Event is transmitted and reconstructed without error

(Iossless).

• Full frames are communicated only every o_th frame, where c__>4. (16)

These are Background Frames. Reconstruction fidelity of

Background Frames is not necessarily Iossless. Data not

communicated is reconstructed by interpolation from transmitted

data. Note that KHILS is equipped for a variation of this in which

intervening missing frames are reconstructed by repeating the

most recent fully reconstructed frame.

22

2 N

m

BACKGROUND

EVERY 4th FRAME SENT;
J LOSSLESS

2 N

EVERY o_th FRAME SENT (COMPRESSED);

INTERPOLATE MISSING FRAMES

Fig. 10. BGFG Mode Concept.

................ I RI N

2 N x 2 RATE _ .

II IREDUCTIONI I III

I (x:l _:1 I

RIN-- L I

RATE _ AREA I

2 n x 2n I REDUCTION I I (LOSSLESS)[

4:1 7:.1

VZ I_

RIN

47.22(N'n)

Fig. 11. BGFG Block Diagram

ill,,.._

v

<E I'-
jot)
OZ
a.O
n- o
LULU
I--m
Z

ml
Ol

¢nl
<El
=El

Figure 11 can be used to develop an overall expression for a System

Compression Factor. Here, RIN denotes the data rate associated with

uncompressed data (all the frames).

Foreground compression of the central 2 n x 2 n sub-image area is a two step

process:

A 4:1 reduction because only every 4th frame is sent, and

A 7:.1 reduction by compressing these central frames.

23

We will carry these definitions into the specification of an overall System Compression

Factor, but then restrict _ to _ = 1 in evaluating the consequences of varying

parameters. That is, we will later assume that all central frames are sent (full frame

rate).

Note also that we restrict the compression of central frames to be Iossless. More

generally, the compression of the central region could be achieved by any approach,

such as those considered for background frames. The System Compression Factor

equation below supports that generality, although it would not appear to have any

significant value for the MSTI driven goals.

Foreground 2 n x 2 n Iossless compression by a factor of 7:.1 results in a rate of

RIN

22(N_n) .7. _ (17)

If we choose n = 6, N = 8 as realistic baseline parameters, this term becomes

RIN

16 7"4
(18)

where the central area transmitted is 64 x 64.

Background Frame reduction in rate is a two step process:

An (_:1 reduction because only every (_th frame is sent, and

A 13:1 reduction by compressing each of these frames.

The net result is a rate of

BIN

o_p (19)

which can be reduced slightly by not "redundantly" sending the central area in each of

these frames (which is already sent with perfect quality).

24

Using these terms we can calculate an overall System Compression Factor as

1
sCF = (20a)

_ 1 1
1 y_) (22(_(__n)) +

where the (1 -'y_/(xl_) term takes into account this central redundant area, assuming

that oc divides 4.

Henceforth, we will assume that _ = 1 (no frame rate reduction on

the central area). Then Eq. 20a reduces to

1
sCF = (20b)

1(1_ __) (_11 + 1
7 o_p 2"-,'" "," a.p

A Limiting Case. Note that if we take o_ = 1 (no frame rate reduction on

background) but make the compression factor 13infinite, sCF in Eq. (20b) reduces to

sCF = 7" 22(N-n) (21)

This is the overall reduction obtained by discarding all data outside the central 2 n x 2 n

area and compressing the center by the factor y.

Simplification. When _ >> 7, Eq. 20b can be simplified to

22(N-n)
sCF = 1 22(N-n) (22)

--+
-y 0_13

Again, if oil3 >> 22(N-n), sCF converges to Eq. (21).

25

Analysis Assumptions

The following section will use graphs and tables to describe the potential

benefits of BGFG modes. We make the following assumptions.

Lossless Compression

• 1' = 2 for Iossless intraframe compression of any foreground area. (23)

13= 2 for Iossless intraframe compression of any background frame. (24)

• 1' = 6 for Iossless F-to-F compression of data in which adjacent (25)

frames (in time) are separated only by 1/30th second. Thus, we

are assuming that F-to-F compression is not applicable to the

compression of Background Frames unless o__ 1. (Actually, F-to-F

compression does not instantly become useless but the achievable

compression factor will decrease as the frames become more

separated in time. We make this 1' = 6 restriction here because

of uncertainty and because we are focusing on results where (x >> 1.)

It should be understood that the possibility of achieving the 1' = 6 F-to-F

compression is highly sensor dependent. The actual values achieved on applicable

sensors could be more or less than the 1' = 6 assumption used in these analyses.

A word about unnecessary overhead. JPL recently implemented a

separate demonstration of Iossless compression for the MSTI 3 environment. In this

demonstration, the format specification requires the use of redundant 48-bit identifiers

on each line, as well as additional lines of engineering data at the end of each frame.

Clearly, these types of constraints increase the overhead and decrease the net

compression efficiency that can be obtained. The penalty in loss of efficiency is quite

dramatic when frame sizes are small, as BGFG modes where the central area is

transmitted could be as small as 64 x 64. The following analysis illustrates the

magnitude of these penalties.

26

Let the image size be 2n x 2n with a quantization of q bits/sample and let y be

the compression factor achieved on the actual image as we have been assuming.

Then the number of bits/pixel required on the actual data is given by

but the overhead adds a penalty of

q
- (26)
Y

for a total of

12+q

2n-2
bits/pixel (27)

q 12+q

7 + 2n-2
bits/pixel (28)

Equation 27 is plotted in Fig. 12 for q = 12 and q = 8.

• With a quantization of q = 12, the penalty when compressing (29)

a 64 x 64 size image (n = 6) is as much as 1.5 bits/pixel. Instead

of representing an image with 6 bits/pixel (with y = 2), the

representation would require 7.5 bits/pixel, a 25% increase.

• If quantization were q = 8, a 2:1 compression would require (30)

4 bits/pixel for the real data, but 5.25 bits/pixel for image plus

overhead. In this case the overhead incurs a penalty of 31%.

Now suppose that q = 12 but F-to-F representation yielded

compression of y = 6 (other constraints would need to be

changed too). Then, y = 6 means that only 2 bits/pixel are

required for the image data but 3.5 bits/pixel are required for

image plus overhead. The overhead now incurs a 75% penalty.

(31)

Paying such a penalty is absurd. Subsequent discussions will assume

that these issues have been resolved so that an overhead penalty is

negligible for all n.

27

1.50
I I I

n

2:
n"
U.I

0 q=8 0.62
0.37 q = 12

0.31

).09
o I I I 0,07

6 7 8 9 10

2 n x 2 n IMAGE DIMENSION, n

Fig. 12. Overhead Penalty

Background Frames

Setting parameters for Background Frames is more difficult since we are now

allowing "lossy compression." Quality of reconstruction is based on a visual

observation of reconstructed frames (including reconstructed missing frames), usually

displayed at a full frame rate (30 f/s). Specifying quality is particularly difficult because,

by definition, the primary central region is always perfect. Further, since the net

reduction factor is e_13, the same reduction factor can be achieved by various

combinations of e_and 13with varying results.

28

But we can make certain practical assumptions on techniques and technology

that will allow us to "see" the approximate consequences of pursuing further

developments that might offer benefits in later flights.

• Lossless - 13= 2 (see paragraphs 24 and 25). (32)

• JPEG - We will assume that operation of the JPEG algorithms (33)

can be acceptably achieved with a compression factor of 13= 10.

• FFIACTALS -We will assume 13= 100 when using FRACTAL- (34)

based algorithms.

Certainly, these assumptions are subject to revision, but they provide a likely

range of acceptable Iossy compression factors. The FRACTAL and JPEG approaches

are identified as being likely candidate compression algorithms that might achieve the

two ends of this range. The 13= 10 factor might be too low for JPEG and the 13= 100

factor might be too high for FRACTALS.

Note that in this study we are excluding the possibility of extremely simple Iossy

approaches which achieve a high 13by combining sub-sampling with Iossless

compression. While clearly inferior to JPEG and FRACTALS, such simplicity might still

accomplish objectives more easily in a hardware-constrained implementation.

BGFG Analysis

It is difficult to consider all the possibilities one might consider. In the following

discussion we will assume that with foreground frames of size 2 n x 2 n and background

frames of size 2 N x 2 N (see Fig. 10)

N = n + 2 (35)

so that

22(N-n) = 16 (36)

29

in Eqs. 20 and 22. Then sCF in Eq. (22) reduces to

16
sCF- 1 16

-- +
"Y (_13

(37)

for the BGFG combinations in Table 3.

Table 3. BGFG Image Sizes Studied

BACKGROUND
IMAGE SIZE

1024 X 1024

512 X 512

256 X 256

FOREGROUND

IMAGE SIZE

256 X 256

128 X 128
64X64

Figure 13 plots the System Compression Factor sCF from Eqs. (20) and (37) as

a function of the Background Frame Rate Reduction Factor, or, for various assumptions

on algorithm usage and using Table 3.

T = 2, 13 = 2. Here baseline intraframe Iossless coding is applied to both

Foreground and Background frames. This is really the baseline concept. With (_ = 1

(no frame rate reduction), sCF = 2. As _ increases, the impact on sCF decreases,

because the fraction of total rate generated by background frames decreases, sCF =

16 at (z = 16 (=2 f/s) but doubling (x to 32 only increases sCF by about 30%.

T = 6, 13 = 2. In this case we apply F-to-F Iossless compression to the

foreground frames with the assumption that T = 6. With a strict adherence to Eq. (14),

sCF _ 13= 2 as o_ _ 1. But this is not realistic since as e_ _ 1 the frame rate

approaches 30 f/s and background frames really become foreground frames, allowing

the use of F-to-F techniques on all data. This is indicated by the solid arrow.

At (x = 8 (=4 f/s) the superior 6:1 compression on foreground frames improves

sCF by only a small amount. This is because at c_ = 8, the contribution from

background frames (at 13= 2) dominates.

30

n-
O
i--
o

u.
z
O
m

c_
w

0
0

LU
I--
C_

50

f'° I
7=6,13= 100

F-to-F,

ACTAL)

jl 61

. 7=6,13= 10

- I
(F-to-F, JPEG)

(FRACTAL)

7 = 2, 13= 100

(JPEG)

24

(F-to-F)

T=6, 13= 2 .,

!
I

I

21

Z_96

9

6

2

11

1 2 4 8

16
y=2,_=2

BASELINE

16 32

BACKGROUND FRAME RATE REDUCTION,

Fig. 13. BGFG System Compression Factors using

Table 3 Image Sizes

Even at (x = 16 (=2 f/s) the overall sCF is increased by only 50% over the use of

intraframe compression alone.

31

y = 2, 13= 10 (JPEG). Now apply JPEG at 13= 10:1 on the background frames
and maintain a y = 2:1 ratio on the foreground frames. Surprisingly, at e_= 16 the net

sCF is almost identical to the one obtained by using the y = 6 F-to-F compression (with

13= 2). When _ --) 32, this mode is significantly worse than with y = 6, 13= 2.

y = 2,]3 = 100 (FRACTAL). Again the results are surprising. Except at low

frame rate reductions (4 < o_ < 8), the advantage of even 100:1 on background frames

doesn't materialize in large improvements in sCF. At o_ = 16, this mode is only slightly

better than y = 6, I3 = 2 and perhaps twice as good as the baseline (y = 2, 13= 2).

y = 6, 13 = 10 (JPEG). By introducing F-to-F compression on the foreground

frames, a dramatic improvement in sCF is obtained at the lower values of (_. Or

interpreted another way, F-to-F improvements to the foreground Iossless compression

factor net an equivalent improvement in sCF, when using JPEG on background

frames.

y = 6, 13 = 100 (FRACTAL). As with JPEG, real improvements occur. Nearly

100:1 is obtained at a very low o_ = 4.

Key Points on sCF. Some key observation points are provided in Tables 4

and 5.

If we take into account the results in Fig. 13 and Tables 4 and 5, and the

downlink assumptions in Equations (4)-(6), we can compute the potential value of

these modes in speeding up downlink transmission times. Tables 6 and 7 provide

selected results which specify the Actual Sensor Event downlink times (i.e., including

the 1/9th duty factor) assuming image sizes of 2 N x 2 N where N = 8 or N = 10 and RD =

1 Mbit/s or RD = 3 Mbits/s.

The results for 1:1, 2:1 and 6:1 (Table 6), taken directly from Fig. 9, correspond

to full transmission of all Sensor Data in a Iossless fashion (e_ = 1).

The remaining results, in Table 7, assume a frame rate reduction factor of (z = 8

(=4 f/s).

32

Table 4. Important BGFG Mode Observations, I.

c_

OO

ILl

I-.

¢3
.J
_1
,K

PARAMETERS

T = 2, N.A.

T = 2, 13= 2 (BASELINE)

T = 6, _ = 6 (F-to-F)

WHEN

VERIFICATION

DATA SET GENERATION

DATA SET GENERATION

T = 2, 13= 10 (JPEG)

Y = 2, 13= 100 (FRACTAL)

T = 6, 13= 100 (F-to-F, FRACTAL)

VISUAL

VISUAL

VISUAL

SYSTEM CF

32

2

6

6

24

5O

Table 5. Important BGFG Mode Observations, II.

(x

8

PARAMETERS

y = 2, 1_= 2 (BASELINE)

T = 2, 13= 10 (JPEG)

Y = 2, 13= 100 (FRACTAL)

T = 6, 13= 2 (F-to-F)

T= 6, I_ = 10 (F-to-F, JPEG)

Y = 6, 13= 100 (F-to-F, FRACTAL)

WHEN

BASELINE, VISUAL

LOSSY VISUAL

LOSSYVISUAL

LOSSLESSVISUAL

LOSSY VISUAL

LOSSY VISUAL

SYSTEM CF

11

22

31

14

44

93

33

Table 6. BGFG Actual Downlink Times

Default _ = 1 (all data Iossless)

BGFG ACTUAL DOWNLINK TIME (DAYS)

IMAGE sCF = 1:1 sCF = 2:1 sCF = 6:1
DIMENSION

2 N RD=I RD=3 RD=I RD=3 RD=I RD=3

256

1024

58 19 29 9.7 9.7 3.2

933 311 466 155 155 51

NO

COMPRESSION, BASELINE, F-TO-F,
FULL FULL FULL

RECONSTRUCTION RECONSTRUCTION RECONSTRUCTION

Table 7. Selected BGFGs, Actual Downlink Times, cx = 8.

Image Size 2 N x 2 N, Central Area Size 2 N-2 x 2 N-2

IMAGE
DIMENSION

2N

256

1024

BGFG ACTUAL DOWNLINK TIME (DAYS)

sCF = 11 sCF = 16 sCF = 30 sCF = 44 sCF -- 93

RD=I RD=3 RD=I RD=3 RD=I RD=3 RD=I RD=3 RD=I RD--3

21 7 14 4.8 7.8 2.6 5.3 1.8 2.5 0.83

84 28 58 19.4 31 10.4 21.2 7.1 10 3.3

¢/)

<_uJ
.J

II (/)

=J

0

A

il (._
kl,i

- 0,.

If v

A
,,,,J

',- <
II I--

-<

II I,I.
p. v

I I

O

A

it
_- I,Ll

|l v

0 A

0 ,.1

-<

II I,I.
v

34

Major Observations

We can now make some major observations.

If Lossy Compression Is Not Employed:

a) Improved F-to-F Iossless compression would be valuable for sending all

data back (oc = 1).

b) There is little advantage in using F-to-F Iossless compression rather than

BGFG Modes unless (_ _>16.

If Lossy Compression Is Used on Background Frames:

The net gains are significantly constrained by a 2:1 foreground compression

factor for c_ _ 8. Improvements by using F-to-F map directly into improvements in

overall sCF.

The most significant system benefit from future improvements to

compression for MSTI (i.e., beyond the baseline 2:1 Iossless intraframe compression)

would come from F-to-F Iossless. It is important to determine the feasibility of achieving

the "estimated" 6:1 F-to-F CF before embarking on costly developments involving Iossy

compression factors. Improvements via F-to-F Iossless would impact all aspects of the

data system: mass memory, downlink for all the data and downlink in conjunction with

BGFG modes.

INDEXING THE DATA

Suppose the most sophisticated BGFG mode just discussed (y = 6, 13= 100, c_ =

8) were used to rapidly communicate a Sensor Event down (sCF = 93:1). If all goes

well, the target remains in the center where the data is perfect and the quality of

surrounding (interpolated) data is high enough to provide a quite adequate full frame

display. If something goes wrong, the display on the ground should be good enough to

allow detection of the problem.

35

But to determine why a problem developed, all the image data (full

frames, perfect fidelity, full frame rate) should be available for a time slice around the

point where a problem was detected. This is the Critical Data (see paragraph 2b).

It makes sense to secure this Critical Data before transmitting all the data to

avoid the consequence of a potential system/spacecraft failure impacting the data. To

do this means that the mass memory storage of Sensor Events cannot be treated as

simply storing one long string of data. Instead, there needs to be a means to both

command and access specific segments of the stored data (as determined by

observing reconstructed BGFG data on the ground).

As an example, suppose the size of the Critical data segment was 30 seconds

(x 1000 frames). Compared to the communication of all data from a full 10 minute

Sensor Event, this provides a 20:1 reduction in the time required to secure the

Critical Data (a worst case situation). If the problem only developed on one of four

sensors, the effective reduction is 80:1 (although other sensor data might provide

supporting evidence of the problem).

36

IV. SUMMARY

Much of the information provided here is conceptual and cannot be adequately

summarized. Graphs, tables and concepts need to be studied and understood.

However, we can make numerous observations that may be helpful to keep in mind.

• An initial program emphasis on Iossless intraframe compression makes sense.

This type of compression appears feasible in a short time frame and can

significantly improve all aspects of MSTI storage and communication.

Therefore, it would be desirable to initially demonstrate as many aspects of its

usage as possible:

Compression into memory

Compression out of memory

Compression within BGFG Modes

. Investigations of F-to-F Iossless compression might yield valuable performance

improvements for later flights - affecting all aspects of MSTI storage and

communication.

. BGFG Modes - a wide range of investigation is possible. Such modes will be

most valuable if F-to-F Iossless compression can be effectively used.

. Ground processing/decompression/display/command considerations need to

be integrated into the overall end-to-end problem thinking.

Interactively responding to received data from a Sensor Event would

require:

a)

b)

a fast decompressor

some form of on-board image indexing

5, Using FRACTALS or JPEG requires uncompressed data from mass memory. If

Iossless compression were used to improve mass memory, an on-board

decompressor would be needed.

37

Data compressed into mass memory with Iossless coding might be used
directly in BGFG Modes without a decoder, but would need additional
formatting.

°

Appendix B provides an apparently quite feasible, relatively low-cost

improvement to the MSTI data link - this would include a possible 3:1

improvement in data rate and improved error characteristics for error-sensitive

data (e.g., compressed). This implementation would additionally provide the

Ballistic Missile Defense Organization with another important technology

demonstration with possible broad impact on other programs.

38

APPENDIX A

Algorithms for High-Speed Universal Noiseless Coding

I. INTRODUCTION

References 1-4 provide the development and analysis of some practical

adaptive techniques for efficient noiseless (Iossless) coding of a broad class of data

sources. These have been applied, in various forms, to numerous applications.

Those functions and algorithms most desirable for incorporation in a "coding

module" which could be implemented using current custom VLSI capabilities were

presented at the first NASA Data Compression Workshop at Snowbird, Utah, in 1988. 5

A workshop committee recommended that NASA should proceed and implement this

"coding module." Since then, both the Jet Propulsion Laboratory (JPL) and the

Microelectronics Research Center (MRC) at the University of New Mexico have

implemented first-generation single-chip CMOS VLSI coding modules. 6-9 The MRC

1.0 I_m coding chip was successfully tested under laboratory conditions at up to 900

Mbits/s. 7-9 A companion MRC "decoding module" is designed to run at up to half the

maximum rate of the coding module. These first-generation MRC chips are now

available commercially from Advanced Hardware Architectures in Moscow, Idaho. 10

Both the MRC and JPL developments are nearing completion of second-

generation space-qualified versions for the coding modules. 11-14 It is anticipated that

the high performance functionality of these modules, first- and second-generation, can

serve most of NASA's science data needs where a Iossless representation is

appropriate.

The intent of this paper is to provide a concise description of the basic

algorithmic and performance characteristics which are embodied in the coding

modules. A more general algorithmic development can be found in Ref. 15 along with

some application notes. Observe that the actual implementations have diverged

slightly from the definitions provided here and from each other. Most of these subtleties

will be discussed.

A-1

II. THE CODING MODULE

A functional block diagram of a general-purpose Iossless "coding module" is

shown in Fig. 1. A variation in Rice's original notation (of subscripting the Greek letter

_) will be used to name various coding operations. Subsequent sections will quickly

converge to more specific definitions that relate to the VLSI modules being

implemented.

The input to this coding module

_n = Xl x2... xj (1)

is a J sample block of n bit samples. _' is a priori or Side Information that might help in

the coding process.

The overall unspecific process of representing _n is named PSI?+ so that the

actual coded result is

PSI? + [xn,Y]

As Fig. 1 shows, the coding process is split into two independent steps

discussed below.

Step 1

A Reversible Pre-processor is a process designed to convert the source

represented by ,_n sequences (and Y) into a close approximation to a STANDARD

FORM Data Source, represented by i n sequences. This process usually includes a

de-correlation procedure (prediction).

The pre-processor converts each _n (and corresponding _', if any) into

_)n'= 61 62... 6j (2)

A-2

A PRIORI
OR

SIDEINFORMATION

PSI?+ _

r---3......... 1
I ADAPTIVE I CLOoD_D_

'-IPRE'PROCESSORIf\ I-_0D_RI i PSI?[b n]
BLOCK I ~n.

"'_1 xn=xlX2 Xj.... I -_;iAI_D2AR_) :

= I FORM SOURC._E

EXTERNAL
PRE-PROCESSED

DATA

Figure 1. General Purpose Noiseless Coding Module Block Diagram

a J > 1 sample sequence of n' bit samples. Usually n = n', and we will henceforth

assume that here.

Standard Form Source. Specifically,

a) Samples of _n are the non-negative integers 0, 1,2, ..., q (3)

b) Samples of _n are independent (4)

c) With Pi = Pr[Sj = i], the probabilities are ordered so that the smaller

integers occur more frequently, i.e.,

P0 > Pl > P2 > • .. (5)

d) The source entropy is given as

H5 ='_,pi log2 Pi bits/sample
i

(6)

The best pre-processor will meet these conditions and produce the lowest H6.

A-3

Step 2

An adaptive entropy coder, named PSI? for now, efficiently represents

(Standard Source) pre-processed i n sequences with the coded result

PSI? [(_n] = PSI? + [Rn, _]

This entropy coder is independent of the pre-processor. The pre-processor's

goal is to achieve performance that remains close to H6 as it varies with time.

Note that the coding module in Fig. 1 allows for coder PSI? to be used directly

on externally supplied pre-processed data.

Prelude to the Details

A general form of an Adaptive Entropy coder (designed to efficiently represent

Standard Data Sources), which chooses from multiple algorithm options on a block-

by-block basis, will be identified in the next section. Specific sets of such code options

will be defined and incorporated in this structure as a parametrically defined

adaptive coder. In doing so, the unspecific "PSI?" will be turned into a specific coder

called "PSIss."

Finally, the specific parameters of PSIss that are used in current VLSI

implementations will be identified.

A-4

III. ADAPTIVE ENTROPY CODER FOR THE STANDARD SOURCE

PSI? of Fig. 1 represents the general-purpose adaptive coder called PSI11 in

Refs. 2-4 and 15. Basically, such a coder chooses one of a set of Code Options

(coding algorithms) to use to represent an incoming block of "pre-processed" data

samples. A unique binary identifier precedes a coded block to tell a decoder which

decoding algorithm to use. The following discussion will identify specific code options.

Code

PSIbu

Options

Backup. When no coding of any form is performed on the data, we call this

PSIbu [_n] = _n (7)

This representation is used in an adaptive coder when all other available code options

fail to compress _n. References 7-9 call this the "default" option.

The Fundamental Sequence Code. Recall that the pre-processed

samples of _n are the non-negative integers i > 0. A variable length "Fundamental

Sequence Code, fs", is defined for each i as follows

i zeroes

fs[i] = 0 0 0 0 0 0 1 for i _>0 (8)

That is, simply append a 1 to the end of a sequence of i zeroes.

The "Fundamental Sequence" itself is the application of fs[.] to all the samples of

_n. Following Rice's notation, 1

PSI1 [_ n] = fs[51], fs[52] ,... fs[,Sj] (9)

1 An asterisk, *, is used to emphasize the concatenation of sequences.

A-5

is the Fundamental Sequence. This defines Code Option, PSI1.

Split-Sample Modes. The code option definitions here are basically to "split"

off the k least significant bits of each _n sample and send them separately. The

remaining n-k most significant bit samples are then coded using PSI1. Specifically,
with

5n = 51 52 ... 5j

Let

_n,k= ml m2... mj (lO)

be the sequence of all the n-k most significant bit samples of 5n and let

Lk= Sbl * sb2* sbj (11)

denote the corresponding sequence of all the k-bit least significant bit samples of _n.

That is

5i= mi* sbi (12)

The "Split-Sample" Mode Code Option PSI1 ,k is defined by

PSI1 ,k[_n] = PSII[IVIn,k] * t-k (13)

Note that k = 0 is a special case where

and when k = n

PSI1,0 = PSI1 (14)

PSII,n = PSIbu (15)

A-6

The Individual Code Words. Note that the individual code word

assigned to 5i in (12) when code option PSI1 ,k is applied is given as

fs[mi] * sbi (16)

That is, the Fundamental Sequence Code, fs[.] in (9), is applied to the most significant

n-k bits of 5i, followed by the least significant k bits of 5i. From this description, it should

be easier to see that the only variable-length-code operation ever required is

the application of fs[-], since the " sbs" can simply be shifted out, and fs[.] can be

implemented without any table Iookups.

Performance of the Individual PSll,k Options. Under certain familiar

assumptions about the type of data source (these assumptions will be described in a

later section),

the individual "variable length codes" represented by (16)

were shown by Yeh17,18 to be equivalent to Huffman Codes. (17)

Thus they are not only extremely simple, they are optimum too.

But even more important for their application in an adaptive coder, the entropy

where PSI1 ,k achieves its best performance is at

-k

H5 = k + 2 bits/sample (18)

-k

and performance remains close to H 5 over a range of about +0.5 bit/sample. Thus

there is at least one PSI1 ,k option that should provide efficient coding for any

H5 > 1.5 bits/sample (19)

Such conclusions can also be drawn directly from simulations using a broad

range of data sources.

A-7

Split-Sample Adaptive Coder, PSIss

We can now use the Split-Sample Modes described above to replace the

general coder PSI? in Fig. 1 with a specific class of parametrically defined adaptive

coders, named PSIss. PSIss is based on the following parameters:

J = block size _> 1

n = Input Bits/Sample (20)

N -- number of Code Options

X > 1 (Dynamic Range Parameter)

A functional block diagram is shown in Fig. 2.

PSlss

Imm mmm m m m mm m mm m mmm m m mm m m mm m m m mm mll

Figure 2. Parametric Split-Sample Adaptive Coder Functional

Block Diagram

The representation of J sample _n, using an N option PSIss with parameter ;L >

1, is given by

PSIss[_ n] = ID(id) * PSI1, k(id)[_ n] (21)

A-8

where

id=0, 1,2,... N-1 (22)

is the integer value of a coder identifier for the options used, and ID(id) is its standard

binary representation, requiring2

[log2 N] bits (23)

PSI1,k(id) is the Split-Sample option specified by id, where

k(id)= I nforid=N-I
X- 1 + id Otherwise

(24)

for parameter X > 1. By (15) and (24) the last option is PSIbu in (7).

Dynamic Range. Except for limiting cases, the range of entropies where

PSIss can be expected to efficiently represent pre-processed _n sequences has been

shown to be closely specified by

_. + 0.5 < H5 < min (25)

A close look at this expression shows that each increase in _. moves the

Dynamic Range of efficient performance upwards by 1 bit/sample.

Performance Graph. A graph of typical performance for PSIss with N = 12, 3.

= 1, n = 14 and J = 16 is shown in Fig. 3.

2 [z] is the smallest integer, greater than or equal to z.

A-9

Figure 3.

EL
E
t_

LU"
0
z
<

rr
0
LL
rr
w
n

14.0

12.0

10.0

8.0

6.0

4.0

2.0 J/

0.0 _

0.0 2.0

/
,/

,/
,/

/

4.0 6.0 8,0 10.0 12.0 14.0

ENTROPY, H_, bits/sample

PSlss Average Performance for N = 12, n = 14, ;_ = 1, J = 16

Choosing the Right Option. The optimum criterion for selecting the best

option to use to represent _n is to simply choose the one that produces the shortest

coded sequence. That is,

choose k = k* if 3

(PSI1 ,k* [(_n]): k n {_(PSI1 ,k [(_n])} (26)

Now, letting

Fk : _(PSI1 [IVln,k])

we have from (12)

3_(_) = length of sequence Z in bits.

A-10

_(PSI1 ,k [_n]) = Fk + Jk (27)

and from (8)- (10)

J
Fk = ,_mi + J

i=1

(28)

(i.e., the sum of the most significant n-k bit samples plus the block size).

Thus (27) and (28) can simplify the decision making in (26) without actually

coding the data. But this can be further simplified.

By taking advantage of the randomness in the

expected value of Fk can be related to F0 by 4,15

J
E { FkIF0 } = 2 k F0 +_(1 - 2 -k)

least significant bits, the

(29)

which we use as an estimate in (27). We have

J
_1 ,k (_n) = 2-k F0 + _ (1 - 2 -k) + Jk

= o_'(PSll,k [_n]) (3O)

We can then choose k = k* if

_'1 ,k* (_n)= rn_n { _/1,k (_n) } (31)

and this leads to distinct decision regions based solely on F0 (which by (28) can be

determined by adding up the original samples since mi = 5i). The boundaries to

adjacent PSI1 ,k decision regions are given by

J (2k+1F0 = _ + J) bits (32)

A-11

Any PSI1,k option will generate more bits than PSlbu when

J
F0 > _ [(n-k) 2k+l + 1- 2k] bits (33)

A sample table of decision regions is shown in Table 1 for an N = 8 option

PSIss.

Note that if the largest value of k used is k = _, then PSI1, Y will generate more

bits than PSIbu when

F_ > (n -_) J bits (34)

which may be a simpler test than (33) provides, in some cases.

Table 1. Decision Regions for an N = 8 Option PSlss

CODE
OPTION Fo REGION IN BITS

PSI1,0 Fo < 5J/2

PSI1,1 5J/2 < Fo < 9J/2

PSI1,2 9J/2 < Fo < 17J/2

PSI1,3 17J/2 < Fo < 33J/2

PSI1,4 33J/2 < Fo < 65J/2

PSI1,5 65J/2 < Fo < 129J/2

PSI1,6 129J/2 < Fo < (128n-831)J/2

PSIbu (128n-831)J/2 < Fo

PSIss Implementation Parameters

The primary PSIss parameters used in the first-generation VLSI

implementations were as follows: 6-9

A-12

a) J = block size of _n = 16

b) n = supported quantization of _n samples

= 12 for JPLchips

= 4, 5, ..., 14 for MRC chips

c) N = number of code options

= 11 for JPL chip

= 12 for MRC chip

d) X = Dynamic Range Parameter = 1 = Starting Option Parameter

Some Subtle Differences. By Eq. 23, the number of fixed identifier bits does

not need to be more than [Iog2N] bits. A coder which represents 8-bit data has no

need for more than 8 code options and thus should need no more than a 3-bit

identifier. The second-generation MRC design will recognize this situation. However,

JPL's first- and second-generation chips and MRC's first generation chip fixed the

number of identifier bits at four.

In the JPL case, the first-generation chip only supported input quantization of 12

bits/sample, so this was not an issue. A second design now provides support for data

with quantization down to 8 bits/sample. But in doing so the number of code options is

still fixed at 11, yielding 4 bits for identifiers.

The JPL support for n < 12 is provided by treating data of lesser quantization as

right-justified 12-bit data. The consequence of this is that there does not exist a true

backup (default) mode when input data is not truly 12 bits/sample. For example,

instead of using an 8 bits/sample PSIbu (e.g., as dictated by Table 1), a JPL second

generation coder would instead use some intermediate split-sample mode beyond

PSI1,6. In the rare eventuality that PSIbu is needed, this shortcoming would incur a

penalty of over 1 bit/sample in the block in which it occurs. Each MRC design uses a

true backup.

By (22) and (24), PSIbu in (7) is always assigned the identifier id = N-I. Thus

an N=11 option coder would assign the binary four-tuple identifier "1010" (for ten).

A-13

JPL's N=11 designs instead assign the "all-ones four-tuple" to the PSlbu identifier.

Similarly, and more generally, the MRC designs assign the "all-ones four tuple" to the

PSIbu identifier for N>8 and the "all-ones three-tuple" when N<8.

Another distinction between the JPL and MRC designs lies in the method for

determining which code option to use. The JPL coders basically use the approach

illustrated in Table 1 where decisions are based on F0 alone. (This is generally the

most desirable technique for software implementations because of the minimal

computation requirements.) MRC coders instead make decisions based on the exact

bit count for each option (requiring the calculation of each Fk in (28)). The difference in

average performance between the two methods has been shown to be of no practical
significance.

By (21), (13) and (14), the form of a coded block is

ID(id) * PSII(IVIn,k) * [-k

Here, the JPL and MRC approaches diverge slightly. The MRC format follows the

definition of Lk given by (11) and (12). However, the JPL format splits _-k further into k

subsequences, each containing all the sbs from each sample which are of the same

significance. While this provided a simplicity in the JPL coder design, it incurs a

penalty on the operations required by a decoder.

Some additional differences are noted in a later section on pre-processing. For

specific details on these implementations, consult Refs. 6-16.

More Generality

The adaptive coder we have designated as PSIss is actually a subset of the

more general coders in Ref. 15 (PSI14 and PSI14,K). The latter coder definitions

1) Permit _. to be zero or negative, thus allowing for additional "low-entropy"

code options that provide improved performance below 1.5 bits/sample. Ref. 15 and

earlier papers provide various low-entropy code options which can be incorporated

into this structure or can stand alone as separate approaches. Yeh has provided a

A-14

computationally simple algorithm for incorporation in the second-generation MRC

design. 14

2) Provide a second parameter, K, for adjusting the Dynamic Range. K

basically specifies a fixed K-bit pre-split of data samples, before or after a pre-

processor.

3) An extended coding structure that allows these same algorithms to also

be applied to the representation of code identifiers. This reduces the overhead penalty

when operating many-optioned coders on fairly stationary data.

A-15

IV. THE PRE-PROCESSOR

The entropy coder, PSIss, as described in the previous section, was designed

to efficiently represent (pre-processed) Standard Data Sources. PSIss doesn't need to

know which pre-processor was used to produce its input. However, for an extremely

broad set of real problems, the general pre-processing function of Fig. 1 can be

replaced by the more specific Basic Predictive Pre-processor in Fig. 4. It is shown

imbedded within the complete coding module for your convenience.

Standard Predictor

The first part of this pre-processor is a very simple predictor consisting of a

single sample-delay element. With xi as the ith sample in ,_n, this delay element

"predicts" that xi equals the previous sample:

A

xi = xi-1 (35)

EXTERNAL
PREDICTION

Fig. 4. Basic Predictive Pre-processor Within Coding Module, PSIs$+

The previous sample could be the last sample from a previous block when coding

multiple blocks. It is assumed that the sample delay is always initialized with a

A-16

prediction. But note also at this time that the module's design allows for an External
Prediction to be supplied in place of this simple one-dimensional form.

The difference between any sample and its prediction produces the error signal

^

Ai = xi - xi (36)

and the block of J error values

_=A1 A2...AJ (37)

As a new data source, A sequences tend to be uncorrelated and display a unimodal

distribution around zero (when data values are not near the boundaries of its dynamic

range). That is 4

Pr [Ai = 0] > Pr [Ai = -1] > Pr [Ai = +1] > Pr [Ai = -2] > (38)

The Mapper (into Standard Source)

When the latter condition in (36) is true, the following function will map each Ai

into a corresponding Standard Source bi such that

P0 > Pl > P2 > P3 z

Additionally, it will assure that an n-bit/sample xi from ,_n produces an n-bit/sample hi.

Further, the desired probability ordering of the bi is more closely approximated when xi

values are near 0 or Xmax = 2 n - 1.

4 An equally valid assumption is

Pr [_i = 0] z Pr [Ai = +1] z Pr [_ = -1] z Pr [Ai = +2] z...

which is the basis of the JPL VLSI chips. It leads to a mapping function which looks very similar to (39) and

(40). Reference 15 shows that a "decoder" using one mapping function could be used to decode data
that had been generated using the other mapping function.

A-17

The Mapper, used in the MRC design, is defined by

_i =

2Ai 0 < A i < e

2 IAil- 1 -e < A i < 0

e + IAil Otherwise

(39)

where

O = min (hi, Xmax-hi)

Xmax = 2 n - 1

(40)

A Further Benefit. Suppose the pre-processor in Fig. 4 is set to receive an

external prediction, and fix that prediction to

^

xi=o (41)

Then, tracing through (39) and (40), one finds that

5i = xi (42)

That is, the input to the pre-processor,)(, is passed directly through unchanged,

becoming as _. This means that the separate desired external input line in Fig. 1 (to

allow the pre-processor to be skipped) can be omitted.

The Ideal Case

If one assumes that the distribution of ,_ samples in (38) fits the Laplacian form,

then the code equivalence result in (16) can be proven.17,18 That is,

the simple PSII,k codes are equivalent

to Huffman Codes for Laplacian

distributions of prediction errors. (43)

A-18

Reference Sample

Most of those applications which make use of the built-in Predictive Pre-

processor will occasionally need to incorporate a "Reference Sample" along with the

coded prediction errors (e.g., at the start of an image line). Each of the VLSI

implementations incorporate an optional feature to extract such a Reference Sample

from an incoming data stream. The JPL and MRC approaches to formatting this

Reference Sample are distinctly different. Consult Refs. 10, 11, 14 and 15.

A-19

V. PERFORMANCE COMPARISONS

References 12 and 18 compare the performance of a complete PSIss+ coding

module with the well-known LempeI-Ziv, Adaptive Huffman and Arithmetic coding

algorithms.

References

1) R. F. Rice and J. R. Plaunt, "Adaptive Variable Length Coding for Efficient

Compression of Spacecraft Television Data," IEEE Trans. on

Communication Technology, Vol. COM-19, Part I, Dec. 1971, pp. 889-897.

2) R. F. Rice, "Some Practical Universal Noiseless Coding Techniques," JPL

Publication 79-22, Jet Propulsion Laboratory, Pasadena, California, March

15, 1979.

3) R. F. Rice, "Practical Universal Noiseless Coding," 1979 SPIE Symposium

Proceedings, Vol. 207, San Diego, California, August 1979.

4) R. F. Rice and J. Lee, "Some Practical Universal Noiseless Coding

Techniques," Part II, JPL. Publication 83-17, Jet Propulsion Laboratory,

Pasadena, California, March 1983.

5) R. F. Rice, "Universal Noiseless Coding Techniques (Electronic Slideshows),"

NASA Workshop on Data Compression, Snowbird, Utah, May 1988.

6) J. Lee et al., "A Very High Speed Noiseless Data Compression Chip for Space

Imaging Applications," Proceedings IEEE Data Compression

Conference, Snowbird, Utah, April 1991.

7) J. Venbrux and N. Liu, "Lossless Image Compression Chip Set," Proceedings

of Northcon, Seattle, Washington, Oct. 9-11, 1990, pp. 145-150.

A-20

8) J. Venbrux and N. Liu, "A Very High Speed Lossless Compression/

Decompression Chip Set," JPL Publication 91-13, Jet Propulsion

Laboratory, Pasadena, California, July 15, 1991.

9) J. Venbrux and Pen-Shu Yeh, "A VLSI Chip Set for High-Speed Lossless Data

Compression," IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 2, No. 4, December 1992.

1o) , "Specification for first generation MRC Iossless coder chip set,"

Advanced Hardware Architectures, Inc., Moscow, Idaho, 1991.

11) J. Bowers, "Chip Specification for the Cassini Data Compression Chip," JPL

Internal Memorandum, Jet Propulsion Laboratory, Pasadena, California,

December 1, 1992.

12) J. Venbrux et al., "VLSI Chip Set Development for Lossless Data Compression,"

Proceedings of the AIAA Computing in Aerospace 9 Conference,

San Diego, California, October 19-21, 1993.

13) J. Miko et al., "A High Speed Lossless Data Compression System for Space

Applications," Proceedings of the AIAA Computing in Aerospace 9

Conference, San Diego, California.

14) J. Venbrux, "Universal Source Encoder for Space (USES) Specification,"

Internal Document, Microelectronics Research Laboratory, University

of New Mexico, Albuquerque, New Mexico.

15) R. F. Rice, "Practical Universal Noiseless Coding Techniques," Part III, JPL

Publication 91-3, Jet Propulsion Laboratory, Pasadena, California,

November 15, 1991.

16) R. F. Rice et al., "Algorithms for a Very High Speed Universal Noiseless Coding

Module," JPL Publication 91-1, Jet Propulsion Laboratory, Pasadena,

California, February 15, 1991.

A-21

17) Pen-Shu Yeh et al., "On the Optimality of Code Options for a Universal

Noiseless Coder," JPL Publication 91-2, Jet Propulsion Laboratory,

Pasadena, California, February 15, 1991.

18) Pen-Shu Yeh et al., "On the Optimality of a Universal Lossless Coder,"

Proceedings of the AIAA Computing in Aerospace 9 Conference,

San Diego, California, October 19-21, 1993.

A-22

APPENDIX B

A Practical Concept for Improving the

MSTI Downlink Data Rate by 2:1 to 3:1

OVERVIEW/SUMMARY

Thanks to Ray Rew of Spectrum Astro, new light has been shed on the characteristics and
elements of the now and future MSTI downlinkJ 1] Based on initial discussions with Ray, it

would appear very likely that there is a technically and financially practical approach to

upgrading the post-MSTI 3 downlink data rate capabilities by a factor of 2 to 3.

Basically, the approach would require minor modifications to the current modulation

system and the incorporation Reed-Solomon coding and decoding chips within the communication

system.

The inclusion of Reed-Solomon (RS) coding within a BMDO program would itself provide

a second demonstration of modern communications technology (in addition to data compression).

It would offer substantial long-term benefits to future programs in addition to the immediate 2-

3:1 downlink improvement. (4:1 to 6:1 overall when combined with image compression.)

This brief report seeks to provide:

a)
b)

c)

Historical perspective of RS coding;
Performance characteristics associated with the MSTI data link;

Technology availability.

In the interest of securing the potential advantages of RS coding at the earliest possible

date (e.g., MSTI 4 application) it is important that the information provided here be considered

and acted on as soon as possible.

THE UNCODED DOWNLINK

Error Vulnerability

The effect of individual communication bit errors on uncompressed data is generally

isolated to the data sample in which they reside. But the effect on compressed data can be far

more devastating. Basically, a single error could cause a decompressor to become confused until

it can be re-initialized (e.g., possibly on a line-by-line basis for the MSTI 3 image compression

demonstration).

A similar error susceptibility is associated with the encryption techniques which are

currently planned. In both cases, single errors tend to cause "bursts" of errors (this will be

looked at more closely later).

One can avoid the consequences of this error vulnerability by assuring that the frequency

of errors is reduced to an acceptably low value. At this time, acceptably low has come to mean

a bit-error probability for MSTI of tu

Pb < 10-6 (1)

B-1

The Uncoded Channel

The MSTI 2 communication system (and presumably MSTI 3 and on) employ an

"uncoded" binary data link m in the sense that it includes no "error-correcting" coding. In the
absence of bandwidth constraints, which we will assume for now, the MST1 uncoded data link

looks exactly like a similarly named uncoded, deep-space data link in terms of performance

characteristics. Channel error characteristics are shown in Fig. 7, which plots "bit-error"

probability, Pb, versus signal-to-noise ratio, EflN o (energy-per-bit) in decibels (riB).

Eb/N o vs. Rate. Assuming that transmission power, receiver/transmitter antennas (and

their proximity) remain fixed, EJNo can be viewed as the inverse of data rate. Increasing the

data rate by a factor of two (3 dB) doubles the EflN o , and vice versa. (The energy available per

unit of time applies to a bit's signal twice as long.)

-1 MSTI
I0

L -2
o 10
L
L

-3

' 10
+-

r_

4_ -4
o 10

"t" -5

:= 10
°_

r_
0

o 10
L
a. 0 2 4

Eb/H O,

<

dB

10.8

Fig. 1. The Uncoded Performance Curve

B-2

Point A in Fig. 1 indicates the point on this curve (Eb/N o = 10.8 dB, rate = R bits/s)

where the frequency of "random" bit errors is 10 .6. This is currently the worst case operating

point for MSTI as specified in (1). That is, there will usually be a greater EffNo than required

to achieve a Pb = 106.III This is called Margin, and assures that throughout a mission the

conditions in (1) are met.

Point B on the Uncoded Link Performance curve indicates where Pb = 10-4. This occurs

roughly 3 dB lower where [EdNo -- 7.8 dB, rate -- 2R bits/s] . Thus

and

a)

b)

If the symbol (bit) rate over the channel could be increased (the

bandwidth question)

If it would be possible to accept an error rate as high as Pb = 104

then, an increase in data rate by a factor of two could be achieved (with the same margin).

Bandwidth. In the discussions with Ray Rew ttl in March, he indicated that

some minor modifications to the current modulation system should allow an

increase in channel symbol rate by 3-4 dB. (Of course, Ray would need to more clearly

indicate what "minor" means.)

(2)

This would seem to take care of item (a) above (although we will later be interested in

transmitting channel symbols at rates higher than 3R). However, the error vulnerability of both

compressed and encrypted data makes condition (b) unacceptable.

CODING THE CHANNEL

Similar situations existed in the deep-space program in the 1970's. Before the first

inclusion of image data compression on Voyager at Uranus, the accepted error rate for

uncompressed image data was in the vicinity of 10 3. To include error-sensitive data compression
with the communication channels of the time would have required a reduction in data rate by

approximately a factor of two. This is basically the situation we have here with MSTI, except

that we've already reduced the data rate (to get to Pb = 106) •

The deep-space situation was somewhat more complicated than the present MSTI

problem. The baseline communication system for Voyager (and other projects at the time)

employed a convolutionally encoded/Viterbi decoded channel which would operate at bit error

rates as high as 10 3. This was acceptable for pre-data-compression imaging data but not for

other forms of data (which generally constituted a small fraction of the total data). Hence, the

non-imaging data was additionally coded with a (24,12) Golay block code (before reaching the

convolutional coder).

B-3

AICSt21-t4J

The AdvancedImagingCommunicationSystem(AICS) wasintroducedasa solutionin
themid 1970's.

AICS employed a powerful, interleavedReed-Solomoncode in combination with the
convolutional channel. All data, compressed or not, could be communicated through this

concatenated channel "virtually error free" at roughly the same data rate at which the

convolutional channel alone achieved a bit-error probability of only 10 3.

AICS was patented by NASA in 1976 and the concatenated RS/Viterbi channel has

become a NASA and International Standard. It appears on virtually all deep space missions,

starting with Voyager (at Uranus). Various developments have produced both RS coder and

decoder chips with essentially the same code parameters as originally specified in Ref. 2.

On the surface, these developments would seem to have little to do with the MSTI

problem, since MSTI currently employs an uncoded link. On the contrary, we just need to look

at the problem a little differently.

References 2-4 provide the original arguments and technical details that were originally

needed to convince doubters of AICS performance and feasibility (data compression had not yet

been used either). Subsequent sections will extract portions of these references, and others, to

address the MSTI application.

The Reed-Solomon Code

A simple block diagram of a Reed-Solomon coder with parameters J and E is shown in

Fig. 2.

INPUT

WORD SIZE = 2J-I _l

L 2J - (1 * 2E) -_-I_(,,q_-2_E_ x-_v I
/_,. 2J - (1_ 2E) _ \--INFORMAT--_N-S'YMBOL_RITY

I FO MAT,O J JRS _ OUIPUT

_j CODER

Fig. 2. RS Coder

B-4

Such an RS code is non-binary. An RS symbol consists of J bits so there are 2 J

possible RS symbols. All coding and decoding operations involve RS symbols, not individual

bits.

The input to an RS Coder are called "information symbols." As Fig. 2 shows, 2J-(1+2E)

information symbols enter the RS Coder to the left. The result of coding is a codeword of length

2J-1 symbols of which the first 2J-(l+2E) are the same symbols entering on the left. This makes

the code systematic. The remainder of the codeword is filled in with 2E parity (check) symbols.

An RS symbol is in error if any of the J bits making up the symbol are in error. E

represents the number of correctable RS symbol errors in an RS codeword. That is, if E or less

RS symbols are in error in any way, the coder will be capable of correcting them.

Tying Down Parameters. For a great many reasons the code parameters chosen

originally for AICS and eventually implemented in VLSI are

J = 8 , E = 16 (3)

Thus RS symbols are bytes and a decoder can correct up to 16 "symbol" errors in a single
codeword. The RS code structure with these parameters is shown in Fig. 3.

v

i CODE WORD SIZE: 2040 BITS

1784 (=8x 223) INFORMATIONBI'[S I

RS

I I

I I

I I I

1
RS_ .RS2 RS222

223 RS INFORMAIION SYMBOLS

I)(I

256 PARITY BITS

k.....t I

-I_
v j_ 32 RS PAR I T'Y SYMBOL S

)

RS25)

v I

Fig. 3. Basic RS Codeword Structure, J = 8 , E = 16

B-5

Interleaving. Errors made by a Viterbi decodedconvolutional channel tend to be
"bursty". That is, errorsoccur togetherin clumps (increasinglyso at highererror rates). The
symbol error correcting capabilitiesof this RS code is ideally suited and matchedto these
characteristics.However,such"burstiness"becomesincreasinglysevereat high (convolutional
channelerror rates). To avoid a loss in performance,deepspaceRS coding systemsemploy
"interleaving"to spreadthe effectof long inner-channelerror burstsover severalcodewords.

As understoodnow,a near-termMSTI applicationof RScodingis unlikely to requirethe
deep-spaceinterleavingcapability becauseanuncodeddatalink doesnot inherentlyhaveanyof
these"bursty" characteristics.ThecurrentlyavailableRScoder/decoderchipscansetinterleave
depth,I, from I = 1 (none),up to I = 8.

While not immediatelyan issue,therearecertainly many military (SDI) situationsin
which error eventscome in bursts,even when the underlyingchannelis uncoded(e.g., other
componentsof the end-to-enddata link). Thus,for future reference,it is important to at least
understandthe potentialburst-error-correctingcapability of an interleaveRS code.

Thebasicburst-error-correctingcapabilityof thisJ = 8, E = 16 code is a burst of E = 16

symbols or 128 bits. That is, a complete wipe out of any stretch of 128 bits in a codeword

(without other errors) could be corrected.

Interleaving at a depth I basically increases the burst error correcting ability by the factor

I. Then with I = 8, an error burst of over 1000 bits could be corrected (assuming no other errors

in the 8 codewords).

RS Coding on Uncoded Channel

The performance curve for the uncoded data link of Fig. 1 appears again in Fig. 4 along

with the performance curve for an RS coder with the just specified parameters J = 8, E = 16,
I > 1.IsJ

As in Fig. 1, error probability is plotted as a function of EflNo in Db, which we know is

inversely related to data rate. Points A and B are repeated and their relative data rates are

indicated as R bits/s and 2R bits/s, respectively.

An RS performance curve is shown as the new graph. Here the ordinate is "probability

of a Reed-Solomon codeword error," PRS , instead of bit-error probability (which would be

lower). This is a much more appropriate measure of performance as we will illustrate later.

Note that "signal-to-noise" ratio needs a more sophisticated interpretation here. EJNo

means energy per information bit. On an uncoded data link the information bits are the same

as channel bits so this issue never comes up. But with RS coding, not all the bits communicated

are information bits. Roughly 12% are parity symbols with the J = 8, E = 16 code.

The RS performance curve shown takes this into account and reflects the true information

rate (the data rate of the real data). Channel bits are actually communicated at about 0.6 dB

lower signal-to-noise ratio (and 0.6 dB higher bit-rate).

B-6

L. L -2
0 0
L _- 10
L L

I I -3
_ I0

o

4- -4

o _. 10
0

D,

_ -5
- *" 10

,i

n
.o 0 -6
o _ 10
L 0
O. L

O.

l
Uncode

I

MST

3R

RS

i

i i
0 2 4

Codin 9 +
)

I;.2"

dBEb/H O, >

< Data Rate

10.8

Fig. 4. RS Performance Curve

As should be apparent, the PRS performance curve is quite different than that for the

uncoded Data Link. Not only is it located at a lower _o (and hence higher data rate), but

it is very steep. Error rates drop off by approximately one order of magnitude for every 0.1 dB

increase in F_I,/No . Basically, once the E_qo exceeds around 6.2 dB (point C), where

PRS < 106, a "virtually error-free" data link is achieved. The true meaning of a PRs < 106

is discussed in a later section titled "Error Events."

Data Rate Improvement. The difference in _o, and hence data rate, between Point

A and Point C in Fig. 4 provides the potential data rate improvement to post-MSTI 3 missions

from a direct application of RS coding. The potential data rate improvement is

A Rate = 4.6 dB (4)

which is equivalent to a factor of 3. This is illustrated in Fig. 4 where Point A is indicated to

be at data rate, R, and Point C at data rate 3R.

Actual improvements will depend on what modifications to the current modulation system
are feasible. Such modifications need to allow a higher (channel) symbol rate without bandwidth

constraints. Initial conversations with Ray Rew suggest that a factor of two or so should be quite

1 II]feasib e.

B-7

Concatenated RS Coding

It is of longer-term SDI interest to understand the potential for data rate improvements

based solely on the available EdN o . That is, when modulation systems can accommodate the

higher bandwidth. Unlike the direct RS coding application, the following discussion is not

expected to be of immediate interest to the MSTI program.

The same RS code, concatenated with a K = 7, v = 2 convolutional code (Voyager) could

operate at approximately 3.2 dB _o to achieve the equivalent of Point C in Fig. 4 That's

another factor of two - for a total data rate improvement of 6.

Adding Compression. Coupled with an assumption of a 2:1 lossless compression

capability, this yields a total net potential of 12:__._!1improvement in downlink capability from

advanced technology - without any loss to the data.

If it were later determined that frame-to-frame prediction could improve the lossless

compression factor by up to 6:1 for some images - then, on those images, the net gain through
the downlink would approach 36:1.

Bandwidth Expansion. To operate the K = 7, v = 2 codes at such low _o would

require a channel symbol rate which is a factor of 4 higher than required of the uncoded data link

to achieve Point C (i.e., 12:1+ compared to Point A). Some other less powerful codes (e.g., with

v = 4/3) could get close to these results with a channel symbol rate increase closer to 3:1.

Going the other way, a further data rate improvement of about 1 dB could be achieved

with more powerful convolutional codes (e.g., K = 15, v = 4) and greater bandwidth expansion.

Error Events and Pns

An error event on the uncoded channel occurs whenever an individual bit error occurs.

Such independently occurring random errors will tend to be distributed uniformly throughout a
data stream.

An error event on a channel which incorporates the RS coding occurs only when an RS

codeword is in error (i.e., when more than 16 symbol errors occur). Since a codeword is roughly

2000 bits in length, this means that, with a codeword error rate of PRS, an error event will occur

once every

2x103 (5)

PRs

B-O

Taking PRS = 106 as assumed for Point C in Fig. 4, this would mean one error event every

2x 103x 106 = 2x 109 bits (6)

Accepting a decrease in data rate by a tiny 0.1 dB (i.e., at 3.3 dB) would increase this figure to

one error event every
20 Gbits (7)

or close to one error event every
3 Gbytes (8)

Surely, the term "virtually error free" is appropriate for this kind of performance, and

suggests the possibility of an error-free mission.

Effect of Error Events. A decoded RS symbol stream will remain entirely error-free

unless a codeword error occurs. When a codeword is in error, more than 16 symbol (byte) errors

have occurred and so they are not correctable by the 16 error-correcting code decoder. (In most

cases, there will be 17 symbol errors remaining). Such symbol errors will be randomly

distributed throughout a codeword, including its non-information parity symbols. We wish to

consider the worst case impact of such errors on compressed image data.

Figure 5 provides a somewhat idealized illustration which should be adequate for this

purpose. Here a sensor produces source image lines which are 512 pixels long, with each pixel

quantized to 8 bits/pixel. Images are delineated by parentheses, '(' and ')' in this figure. The

central three source lines in Fig. 5 are labelled L1, L2 and L3.

A source line is assumed to be prefaced by a synchronization word (SYNC), of length c

bits. The total length of an uncompressed source line is then 4096 + e bits, where e << 4096.

Now assume, somewhat idealistically, that the data part of each line is compressed by 2:1

(e.g., using a lossless Rice Algorithm system as currently envisioned) and that each compressed

line is preceded by a synchronization word (SYNC) and a Reference Sample (REF), of combined

length c' . The length of a compressed line is then 2048 + e' bits , where e' << 2048 .

Uncompressed lines L1, L2 and L3 in Fig. 5 become compressed lines cLl, cI-a and cL3.

If an error is encountered by a decompressor it will very likely cause the effect of the

error to propagate until the decompressor can be re-initialized. The SYNC and REF assumptions

provide the assurance that, with very high probability, a decompressor can be reset at the start

of each line. Thus, the impact of "an error" can be confined to a line. Then a worst case

assumption for the impact of a single error is that it will cause the complete loss of the line it

occurs in (i.e., as if the error occurred at the start of the line).

Under this assumption of worst case damage from a single error, multiple errors occurring

within a line are no more damaging than one. This bounds the problem in a practical way.

B-9

512 p_.._ls

8 b_t,'pt_el [S YHC) (-)

'\

___ [__/.4B.)_s_n:• .._
cL1 '

I

1

I

I

p

I

jL _

Uncompressed Lines

4086 +e BITS

L2

COHPRESS
2:1

', Compressed Lines/
', zo4e +_" BITS ' ,

[_'04S.)" _ _ _
cL3

RS
CODIHG

Jl I_ Jl "

(R ,'

17_4 1784 Information Bits !794

, of R$ codeword

{

_ L3
/
/
/

/
/

/
J

.).(__ _
/

/

.F

/

/

/

,i

/

/

/'

/

Fig. 5. Error Effects on Compressed Lines

B-IO

Now consider Fig. 5 again. The lower part of the diagram assumes that the compressed

lines are passed through a J = 8, E = 16 RS coder without interleaving (I = 1). Generally, the

start of a line and the start of an RS codeword will not line up as Fig. 5 illustrates. Here the

square brackets, '[' and ']' , are used to show the start and end boundaries of the 1784

Information Bits of sequential RS codewords.

Suppose that the codeword marked A in Fig. 5 is in error. Extending our worst case

criteria, compressed lines with any portions that lie within this RS codeword are lost. In this

example, lines L1 and L2 would be lost (although we can easily see that only the end of L1

would be damaged).

Summary Observations. Combining these observations with those in (8) we have, for

a system incorporating basic lossless image compression:

Operating the RS coded link at an EJNo > 3.3 dB

(corresponding to an improvement factor in data rate
of = 3:1 over the uncoded data link), would incur a worst

case loss of only two lines of image data once every 6 Gbytes

of source data! (That is, once per mission?)

(9)

By comparison,

An uncoded data link operating at a bit-error probability of

Pb = 106 (i.e., at an EJN o = 10.8 dB, or a data rate only 1/3

of the proposed RS coded system), would incur a worst case

expected loss of 24,000 lines of image data for the same

6 Gbytes source data.

(10)

Effect of Error Events II. Some additional observations can be made.

Interleaving

Interleaving might be incorporated to extend the burst-error correcting ability of the RS

coding and/or to avoid (EJNo) performance degradation when operating in combination with a

convolutional inner channel.

The built-in interleaving approach of available chips is called Interleave B in Ref. 2. In

this case, increasing interleave depth, I , will spread the errors of a single codeword over

additional compressed lines. Specifically, errors may occur over a stretch of 17841 bits, instead

of only 1784 bits.

Performing the interleave A approach in Ref. 2 would assure that the effect of a single

codeword error remained confined to only 1784 data bits regardless of interleave depth, I.

B-11

More Sophisticated Compression

If the lossless compression system now being investigated, and illustrated in Fig. 5, were

extended to include two-dimensional prediction (to improve performance by = 0.5 bits/pixel),

individual lines would no longer be independent. The effect of an error could propagate over

multiple lines (instead of only to the end of one). This problem would be further compounded

if prediction between image frames were employed. Errors could, in this case, impact multiple

frames. Similar situations can be associated with the application of "lossy" algorithms too.*

Certainly, the advantages of the virtually error-free environment provided by Reed-

Solomon coding to these situations is obvious.

TECHNOLOGY AVAILABILITY

Reed-Solomon coder and decoder chips with the desired J = 8 , E = 16 parameters have

been developed by the University of New Mexico under the direction of GSFC. 161 The CMOS

coder chips are space qualified.

Radiation-hardened to 3 x 106 rads total dose

SEU-hardened to less than 1 x 10 1° error per bit-day

Pin selectable interleaving, I = 1-8

200 Mbits/s capability

COST [71

Decoders. $2K per 4-chip decoder.

Flight Coders. Minimum order of 25 chips at $1200 per unit, plus $7K testing per lot,
for a total of = $37K.

*Current de-encryption algorithms have a similar difficulty with errors as compressed data.

Many errors are generated from a single channel error.

B-12

REFERENCES

°

.

°

.

,

6.

.

Technical Interchange with Ray Rew of Spectrum Astro at the Jet Propulsion Laboratory,

Pasadena, CA, March 23, 1993.

R. F. Rice, "Channel Coding and Data Compression System Considerations for Efficient

Communication of Planetary Imaging Data," JPL Technical Memorandum 33-695, Jet

Propulsion Laboratory, Pasadena, CA, June 1974.

R. F. Rice, "An Advanced Imaging Communication System for Planetary Exploration,"

SPIE Seminar Proceedings, Vol 66, August 21-22, 1975, pp. 70-89.

R. F. Rice, "End-to-End Imaging Information Rate Advantages of Various Alternative

Communication Systems," JPL Publication 82-61, Jet Propulsion Laboratory, Pasadena,

CA, September 1, 1982.

CCSDS Report CCSDS 700.0-G-2, October 1989, pg. A-5.

Data Sheet for "Space Qualified High Speed Reed-Solomon Encoder," NASA SERC for

VLSI Systems Design, University of New Mexico, Albuquerque, NM, September 1992.

Conversation with Warner Miller, GSFC, April 6, 1993.

B-13

TECHNICAL REPORT STANDARD TITLE PAGE

3. Recipient's Catalog No.I. Report No. 2. Government Accession No.
94-16

4. Title and Subtitle

System Considerations for Efficient Communication and
Storage of MSTI Image Data

7. Author(s)

Robert F. Rice

9. Performing Organization Name and Address

JET PROPULSION LABORATORY

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 91109

12. Sponsoring Agency Name and Addre_

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

5. Report Date
October 1994

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.
NAS7-1260

13. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency Code
RF 184 BP-889-54-49-10-20

15. Supplementary Notes

16. A_tract

The Ballistic Missile Defense Organization has been developing the capability

to evaluate one or more high-rate sensor/hardware combinations by incorporating

them as payloads on a series of Miniature Seeker Technology Insertion (MSTI)

flights. This publication represents the final report of a 1993 study to

analyze the potential impact of data compression and of related communication

system technologies on post-MSTl 3 flights.

Lossless compression is considered alone and in conjunction with various spatial

editing modes. Additionally, JPEG and Fractal algorithms are examined in

order to bound the potential gains from the use of lossy compression. But

lossless compression is clearly shown to better fit the goals of the MSTI

investigations. Lossless compression factors of between 2:1 and 6:1 would

provide significant benefits to both on-board mass memory and the downlink.
For on-board mass memory, the savings could range from $5 million to $9 million.

Such benefits should be possible by direct application of recently developed

NASA VLSI microcircuits.

It is shown that further downlink enhancements of 2:1 to 3:1 should be feasible

through use of practical modifications to the existing modulation system and
incorporation of Reed-Solomon channel coding. The latter enhancement could also

be achieved by applying recently developed VLSI microcircuits.

17. Key Wor_ _elec_d by Author_))

I. Aircraft communications and

navigation

2. Spacecraft communications, command, an(

tracking

3. Communications 4. Systems analysis

19. Security Cl_sif. _f this report)

Unclassified

18. Distribution Statement

Unclassified; unlimited

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

82

22. Price

JPL 0184 R 9f83

